お申し込み方法

- 申込用紙に必要事項を記入の上、FAXまた は E-mail でお申込ください。
- 確認後、担当者からご連絡を差し上げ、ご希 望のテーマでの内容を検討します。
- 実施内容・日時等の調整を打ち合わせし、 実施先を決定致します。

[お申し込みに方法ついて]

- ご希望の時間、場所、人数などによって内容を変更する 場合があります。
- ●実施予定回数に達し次第、締め切らせていただきます。 また、お申し込みが多数の場合は、新規お申し込みの学校 を優先する場合があります。あらかじめご了承ください。

[教室の実施について]

- 1 校あたり 1 日間までとします。
- ●1コマ50分(平日2時限目以降)。クラス数が多い場合 はご相談ください。
- 講師はこちらで選定いたします。
- ※ 実施風景はプライバシーに十分配慮した上で、ホームページ 等に掲載させていただくことがあります。
- ※実施の際は、安全・衛生面に十分留意いたします。
- ※申込内容等については、当財団の『プライバシーポリシー』に基 づき、適切に取り扱います。詳しくは、下記の当財団ホームページ をご覧ください。

http://www.ostec.or.jp/ostec_wp/pdf/privacy.pdf

お問合せ先

一般財団法人 大阪科学技術センター 普及事業部 エネルギー教室担当 〒550-0004 大阪市西区靱本町 1 丁目 8 番 4 号

06-6443-5318

06-6443-5310

一般財団法人 大阪科学技術センター エネルギー教室検討会

現役の教師や専門家、企業で構成され、 「エネルギー・環境」についての 授業を提案します。

一般財団法人大阪科学技術センターが主催する「エ ネルギー教室検討会」は、大阪府内中学校理科およ び社会科の先生方を中心に、官公庁、教育界、産業 界の方々で構成しています。

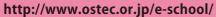
本検討会では、「エネルギー・環境」をテーマとした、 教科の垣根を超えたカリキュラムづくりを目指し、実 用的で発展的な授業を提案しています。

有賀 正裕 大阪教育大学 名誉教授

世話役

大阪教育大学 名誉教授 中田 博保

大阪府中学校理科教育研究会 会長 大阪府中学校社会科教育研究会 会長


委員

大阪府内理科、社会科教職員6名

大阪ガス株式会社、関西電力株式会社、 住友電気工業株式会社、三菱重工業株式会社、 株式会社堀場製作所、関西原子力懇談会、 近畿経済産業局 (順不同・敬称略・2023年3月現在)

ホームページではプログラム例を

e-school@ostec.or.jp

OSTEC EXHIBITION HALL

10:00 **→** 17:00 (日曜·祝日 16:30 まで)

校外学習(班別活動)も受付ております。 テクノ<ん 大阪科学技術館にもぜひお越しください。

Dsaka Metro 四つ橋線本町駅 28 号出口北へ徒歩約 3 分 Osaka Metro 御堂筋線本町駅 2 号出口西へ徒歩約7分 大阪市西区靱本町 1 丁目 8 番 4 号 TEL.06-6441-0915 http://www.ostec.or.jp/pop/

| 2023 年度 | 一般財団法人大阪科学技術センター 出前教室

高生のための

京都市教育委員会、奈良市教育委員会、生駒市教育委員会、国立大学法人 大阪教育大学(順不同)

中高生のための

大阪科学技術センターでは、「エネルギー教室検討会」を組織 し、関西の中学校・高等学校等を対象に、出前授業「エネル ギー教室」を無料で行っております。

体験を通じて、未来を担う生徒たちが知識を高めるだけでなく、「エネルギー・環境」について深く学び、身近な問題としてとらえ、SDGsやカーボンニュートラルなど社会への関心を高められるように、判断力・応用能力の育成を支援いたします。

理科で!

総合的な 学習の 時間で!

技術家庭 科で!

仕事とエネルギー

発泡スチロールカッターや湯沸かし実験 などを通じて、仕事とエネルギーやエネル ギー変換とその利用について学習します。

(実験例)

- 摩擦による湯沸かし実験
- ●ジェットコースター映像を使った解説
- ●アルキメデスの螺旋を使った実験
- ●各種発電の実験

火力発電模型による実験

日本のエネルギー事情

発電模型を使った演示実験や、化石燃料 サンプル等を使い、エネルギー資源や発 電方法を解説し、日本のエネルギー事情 について学習します。

(実験例)

- ●各種発電の実験
- ●石炭の燃焼実験
- 化石燃料(石炭・石油)の観察

手回し発電機を使った発泡

静電気と電流

バンデグラフや箔検電器を使った実験で、静電気や電流について学習します。

(実験例)

- ●百人おどし実験
- 箔検電器を使った実験
- 直流と交流の実験
- テスラコイルの実験

私たちの生活とエネルギー

生活に欠かせない、電気やエネルギーに ついて、実験で歴史をたどりながら解説し、 これからのエネルギーについて考えます。

(メニュー例)

電気の歴史とエネルギー

- ●火おこし体験
- ●エジソン電球の実験
- LED と白熱電球の比較実験
- 日本のエネルギー消費についての解説
- 地球温暖化等、エネルギーを取り巻く課題の解説

光と音

光と音の性質について、レンズやピン ホールカメラ、真空装置等を使って学習 します。

(実験例)

- ●レーザー光を使った反射・屈折の実験
- ピンホールカメラ
- 真空装置を使った音の伝達実験
- ●グラスハープを使った共振実験
- 音でワイングラスを割る実験

化学変化と電池

水の電気分解実験や、燃料電池の実験等を通じて、化学変化や電池の仕組みを 学習します。

(実験例)

- ●水の電気分解
- 固体高分子形燃料電池を使った実験
- ●くだもの電池
- 備長炭電池

地球環境と私たち

生物・物理・化学の観点から実験を交えて、環境と社会問題について解説します。

(実験例)

水環境と私たち

^{垣現と私たち} ● 水のろ過実験 ● 水質検査

- ●生物観察
- 環境とエネルギー
- ●プラスチックの分類
- ●新エネルギーの実験
- 環境とリサイクル
- 発泡スチロールの再発泡実験



空気と水の性質

大気圧や圧力をはじめとした、空気および水の性質について、身近なものを使った実験を通して学習します。

(実験例)

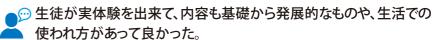
- 身近なもので大気圧を感じる実験
- 注射器による水圧の実験
- 温度による状態変化の実験
- 真空砲の実験

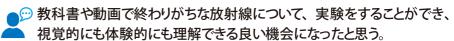
放射線の基礎知識

放射線の発見やその性質・利用等について、霧箱や簡易放射線測定器を用いた 実験によって、より体験的に学習します。

(実験例)

- クルックス管を用いた実験
- 簡易放射線測定器を用いた実験
- 放射線のしゃへい実験




ホームページではプログラム例を写真で紹介!

http://www.ostec.or.jp/e-school/

実施校の声

総実績数 232 校 約 26,296 名 (2023 年 3 月現在)